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Abstract. A variational approach is used to study the surface states of electrons in a semi-infinite polar
semiconductor under hydrostatic pressure. The effective Hamiltonian and the surface-state levels are de-
rived including the effects of electron-optical phonon interaction and pressure. The numerical computation
has been performed for the surface-state energies versus pressure for zinc-blende GaN, AlN, and InN. The
results show that the effect of electron-optical phonon interaction lowers the surface-state energy. It is
also found that the effect of electron-surface optical phonon interaction is much bigger than the effect of
electron-half space longitudinal optical phonon interaction for surface-state levels. It indicates that the
surface-state energies and the influence of electron-phonon interaction increase with pressure obviously.

PACS. 63.20.Kr Phonon electron and phonon-phonon interactions – 71.38.-k Polarons and electron-phonon
interactions – 73.20.At Surface states, band structure, electron density of states

1 Introduction

Among the III-V semiconductors, the wide band-gap ni-
trides GaN, AlN, and InN are currently actively inves-
tigated in view of their promising potential for optoelec-
tronic applications in the blue to ultraviolet spectral range
in recent years [1–5]. The vast majority of researches on
the III-V nitrides have been focused on the wurtzite crys-
tal phase. However, researchers have known for some time
that the III-V nitrides also have zinc-blende phase [6]. The
zinc-blende nitrides as a whole represent an unexplored
material system whose properties may be quite different
from those of their wurtzite counterparts. The zinc-blende
nitrides may have superior electronic properties resulting
from reduced phonon scattering in the higher symmetry
crystal [7]. It is also hoped that the zinc-blended nitrides
may be more amenable to p-type doping. Now that the
capabilities to grow the zinc-blended nitrides have been
demonstrated, a thorough investigation of the physical
properties of these materials is timely.

The electronic surface-states in polar crystals have
been widely studied by many experimental and theoret-
ical scientists [8–12]. It is well-known that the termina-
tion of the lattice produces the intrinsic surface states,
whose wave-functions are localized in the vicinity of the
surface and decay rapidly inside the material [8–10]. How-
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ever, the effects of electron-phonon (e-p) interactions on
intrinsic surface states are rarely mentioned even though it
is well-known that they influence considerably the proper-
ties of the electrons and give rise to polaron states in polar
crystals [13–16]. In view of the imperfection of the nearly-
free-electron approximation (NFEA) perturbation theory
method [8], which becomes invalid when the band gap of
the material is so broad that the perturbation can not
be treated as a small disturbance. Recently, the authors
used a variational theory to study the eigenvalue prob-
lems of the surface states of polarons in polar semicon-
ductors, including both intrinsic surface electronic states
and e-p interactions [11,12]. The results show that e-p
interaction lowers the surface-state energy, and indicated
that the surface optical (SO) phonon influence is dom-
inant, especially for weak e-p coupling or narrow band
gap materials. The pressure dependence of the physical
properties in semiconductor bulk materials has been at-
tracting considerable attention both experimentally and
theoretically. The effect of pressure on the dielectric func-
tion of GaAs has been reported experimentally [17]. It
is found that the high-frequency dielectric constant de-
crease with increasing pressure. Some authors studied the
pressure properties of optical phonons [18], band-gap [19],
effective mass [20,21] in bulk materials. Recently, pressure
dependence of the dielectric and lattice-dynamical proper-
ties, optical phonon modes and transverse effective charges
were investigated theoretically and experimentally in bulk



42 The European Physical Journal B

GaN and AlN [2–4] and proved to be a valuable tool for
deriving material parameters. These works impel farther
investigations both in the bulk and surface structure mate-
rials. However, to our knowledge, the effect of hydrostatic
pressure on the e-p interaction in the electronic surface
states has not been reported. Therefore, theoretical inves-
tigations in detail for the effect of e-p interaction on the
electronic surface states under pressure are invoked.

In this paper, we study the effects of e-p interaction
on the electronic surface states for zinc-blende GaN, AlN,
and InN under hydrostatic pressure, by using a variational
treatment in the two-band model. Both of the effects of
the discontinuity of lattices and the e-p interactions are
considered, including electron-SO-phonon (e-SO-p) and
electron-half space longitudinal optical (LO)-phonon (e-
LO-p) interactions. An effective Hamiltonian for the sur-
face states of electron in a semi-infinite polar crystals is
obtained by using a Lee-Low-Pines (LLP)-like method [22]
in Section 2. In Section 3, the pressure dependence of the
parameter properties for zinc-blende GaN, AlN, and InN
are investigated. A variational calculation for the surface-
state energy of the polarons and the average penetrat-
ing depths of surface-state wave function are performed
in Section 4 and the numerical results for nitrides semi-
conductors GaN, AlN, and InN are given and discussed in
Section 5.

2 Effective Hamiltonian

Let us consider a semi-infinite polar crystal occupying the
positive-half space z ≥ 0, while the region z < 0 is a
vacuum. An electron moving in the material will interact
with the lattice vibrations. Using the NFEA and interac-
tions between an electron and SO-phonon and half-space
LO-phonon, the Hamiltonian of such an e-p system can
be written as [8,11–14]

H = He +Hph +He−p. (1)

The first term in equation (1) is the electronic Hamiltonian
and given by

He =
p2

t

2m∗ +
p2

z

2m0
+ V (z)· (2)

Herem∗ is the band-mass of the electron in the x−y plane.
As a traditional treatment [8–10], the parabolic band ap-
proximation is adopted to describe the motion of electron
in the plane since the translational symmetry is kept.m0 is
the rest mass of the electron and the 1D pseudo-potential
V (z) describing the potential experienced by the electron
in the z-direction can be written as [8].

V (z) =

{
−2V1 cos(2πz/a), z ≥ 0

V0, z ≤ 0
(3)

where V0 and V1 are respectively the vacuum energy level
and half of the forbidden band gap (FEG) Eg in the two-
band model. The second term is the free-phonon field

Hamiltonian and has the well-known form

Hph =
∑

k

~ωLOa
+
k ak +

∑
q

~ωSOb
+
q bq. (4)

The third term in equation (1), e-p interactions term, can
be written as

He−p = He−LO +He−SO, (5)

where He−LO and He−SO stand for the Hamiltonians
of the interactions between the electron and the half-
space LO-phonon and SO-phonon, respectively, and can
be given by

He−LO =
∑

k

1
k

sin(kzz)
(
V ∗

k e
−i~kt·~ρa+

k + h.c.
)
, (6a)

He−SO =
∑

q

(
C∗

q1/2
e−q|z|e−i~q·~ρb+q + h.c.

)
. (6b)

In the equations, ~r = (~ρ, z), ~p = (~pt, pz), in which ~ρ and ~pt

are the x−y plane components of the electron coordinates
and momentum and z and pz the z-component, respec-
tively. a+

k (ak) denotes the creation (annihilation) operator
of a half-space LO-phonon with wave vector ~k = (~kt, ~kz)
and frequency ωLO, while b+q (bq) the corresponding opera-
tor for a SO-phonon with 2D wave vector ~q and frequency
ωSO. V ∗

k and C∗ have been defined in reference [12].
To simplify the calculation for the effect of the e-p in-

teractions, we first carry out two unitary transformations
by using

U1 = exp

[
−i

∑
k

a+
k ak

~kt · ~ρ− i
∑

q

b+q bq~q · ~ρ
]
, (7a)

and

U2 = exp

[∑
k

(
a+

k fk − akf
∗
k

)
+

∑
q

(
b+q gq − bqg

∗
q

)]
.

(7b)

Now let us consider a variational calculation to solve
the Hamiltonian H . We will confine our discussion in
the low-temperature limit and slow-motion electron case.
Choosing an ansatz

|ψ〉 = |φλ(z)〉 |0〉 , (8)

where the wave-vector |0〉 describes the zero-phonon state,
|φλ(z)〉 is the trial wave-function, whose variational pa-
rameter is λ. The total variational energy can be calcu-
lated by the following formulas

E =
〈
ψ

∣∣U−1
2 U−1

1 HU1U2

∣∣ψ〉
= 〈φλ |Hf |φλ〉 , (9)

where
Hf =

〈
0

∣∣U−1
2 U−1

1 HU1U2

∣∣ 0
〉
, (10)
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the displacement amplitudes fk and gq in the unitary
transformation (Eq. (7b)) can be determined by using
a variational calculation similar to that used by LLP in
bulk-polaron problems [11,22]. MinimingHf as a function
of fk(gq) and f∗k (g∗q ) requires

∂Hf

∂f∗k
= 0,

∂Hf

∂g∗q
= 0. (11)

Using equations (10) and (11), we can obtain the effective
polaron Hamiltonian Hf to be

Hf =
P 2

t

2m∗∗ +
p2

z

2m0
+ V (z) + Veff (z), (12)

where Veff is an effective potential in the direction of z

Veff (z) = −αL~ωLOη(z)− αS~ωSOβ(z) (13)

with

η(z) =
π

2
−

∞∫
0

e−2uLzR

1 +R2
dR, β(z) =

∞∫
0

uSe
−2q|z|dq

q2 + u2
S

,

(14a)

αL =
m∗e2

ε~uL
, αS =

m∗e2

ε∗~2uS
, (14b)

uL =
(

2m∗ωLO

~

)1/2

, uS =
(

2m∗ωSO

~

)1/2

·
(14c)

Here αL and αS are respectively the coupling constants
of the e-LO-p and e-SO-p interactions, Hf is a one-
dimensional, two-band model Hamiltonian, which includes
the e-p coupling and is called the effective polaron Hamil-
tonian. The SO-phonon frequency ωSO is given [14] as

ωSO = ωTO

(
ε0 + 1
ε∞ + 1

)1/2

· (15)

3 Pressure dependence of the parameter
properties

In this section we present formalisms to studies lattice
constant, dielectric function, optical phonon energy, band
gap, and electronic band mass properties of zinc-blende
nitrides semiconductors under hydrostatic pressure.

The pressure dependence of the lattice constant for
bulk material can be obtained by expanding Murnaghan’s
equation state [23]

a(P ) = a(0)
(

1 + P
B′

B

)−1/3B′

, (16)

where B is the material bulk modulus and B′ = dB/dP ,
in the low-pressure region, equation (16) reduces to

a(P ) = a(0) (1− P/3B) · (17)

Within the Penn gap model [24] and the dielectric theory
of the covalent bond Phillips and Van Vechten [25,26] the
high-frequency dielectric constant is given by

ε∞ = 1 +DAω2
p/E

2

g with E
2

g = E2
h + C2. (18)

Here, ωp is the valence-electron plasma frequency and Eg

is the average optical gap (or Penn gap), which spilt into
a homopolar (covalent) contribution Eh and a ionic con-
tribution C. The factor A is constant (A ∼ 1) and D =
Neff /4 account for the effects of occupied d states on the
interband transition probability. The plasma frequency
varies as ωp ∼ V −1/2, and it is generally assumed that
dC/dP ≈ 0. The volume dependence of Eh and D is esti-
mated to be Eh ∼ V 0.83 and D− 1 ∼ V 4.3 (Refs. [25,26]).
The volume derivative of ε∞ can be than written in terms
of the Phillps-Van Vechten ionicity fi = C2/E2

g as [26]

∂ln ε∞
∂lnV

≈ 5(ε∞ − 1)
3ε∞

(0.9− fi)· (19)

The pressure dependence of the volume can be written as
∂P/∂V = −B/V . One can obtain the dielectric constant
the following form

ε∞(P ) = 1 + [ε∞(0)− 1] e−
5

3B (0.9−fi)P . (20)

According to equation (19) the borderline between a “co-
valent” and “ionic” pressure dependence of ε∞ is given by
fi ≈ 0.9.

In order to obtain the effect of hydrostatic pressure of
the e-p interaction coupling strength in surface structure
systems, we need to know the pressure dependence of the
bulk optical phonon energy. To do so, we examine the
mode-Grüneisen parameter under the low-pressure

γj = −∂lnωj

∂lnV

∣∣∣∣
V =V0

= B
∂ωj

∂P

∣∣∣∣
P=0

, j = L, T (21)

for a phonon mode j with the frequency. j = L, T label the
LO- and TO-phonons respectively. Since γj is nearly con-
stants in low-pressure for bulk LO- and TO-phonons re-
spectively, the modification of phonon energy due to pres-
sure can be expressed as

~ωj(P ) = ~ωj(0)e
γj
B P . (22)

The “0” subscript denotes that quantities are evaluated
at P = 0. Equation (22) shows that the phonon frequency
increase as the pressure increasing. It may be seen that
the result agrees with calculation of the self-consistent
density-functional perturbation theory [27].

To obtain the pressure effect on the surface-state en-
ergies of the polarons for the zinc-blende nitrides GaN,
AlN and InN materials, we need the information about
the variation of band-gap and electronic band masses with
pressure. At low pressure, one can fit the band-gap Eg(P )
to a quadratic function [19]

Eg(P ) = Eg(0) + bP + cP 2. (23)
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Table 1. Parameters used in the calculation (room temperature and zero external pressure). Energy is measured in meV and
mass in electron rest mass m0.

Materials a(nm) Eg ~ωLO ~ωTO ε0 ε∞ m∗ B(GPa) γLO γTO fi

GaN 0.452 [2] 3300 [2] 92.96 [28] 69.41 [28] 9.6 [28] 5.35 [28] 0.15 [29] 201 [29] 1.2 [4] 1.4 [4] 0.5 [26]

AlN 0.433 [2] 5110 [2] 112.46 [28] 82.05 [28] 9.08 [28] 4.84 [28] 0.25 [29] 203 [29] 1.06 [4] 1.41 [4] 0.449 [26]

InN 0.498 [2] 2200 [2] 73.87 [28] 57.88 [28] 13.6 [28] 8.4 [28] 0.12 [29] 139 [29] 1.08 [30] 1.5 [30] 0.578 [26]

Adopting the data of reference [19], we obtain the val-
ues b = 35.88 meV/GPa, c = −0.804 meV/GPa2 for
GaN, b = 5.24 meV/GPa, c = −0.102 meV/GPa2 for
AlN (indirect band gap), and b = 24.73 meV/GPa, c =
−0.785 meV/GPa2 for InN. The pressure dependence of
the electronic band mass can be expressed as follow [20,21]

m0

m∗ ≈ 1 +
2~

2

m0a2

1
Eg

, (24)

where Eg is the average gap of the bulk material discussed.
Equation (18) can also be rewritten as

m0

m∗(P )
= 1 +

A

Eg(P )
· (25)

In terms of the electronic band masses of the material
GaN, AlN and InN at zero external pressure (seen Tab. 1),
we can find the values A = 13.2 eV (GaN), 15.3 eV (AlN)
and 16.1 eV (InN), respectively.

4 Variational energy

At this juncture, we use the effective Hamiltonian of equa-
tion (12) to solve the surface-state polaron problems. In
the following, we can set Pt = 0 without loss of generality
because we are concerned with only the surface state and
the electron transverse motion is unimportant. Therefore
the effective Hamiltonian Hf of a surface-state polaron in
a semi-infinite polar crystal can simplifies to

Heff =
p2

z

2m0
+ V (z) + Veff (z), (26)

the corresponding variational energy being given by

EV = 〈φλ(z) |Heff |φλ(z)〉 (27)

where |φλ(z)〉 has been pointed as a trial wave-function
and can be chosen as [8,11,12]

|φλ(z)〉 =

{
Ae−λ1z cos(πz/a+ λ2), z ≥ 0

Beqz, z ≤ 0
(28)

with a being the lattice constant of the polar crystal. The
surface of the material has been assumed to lie at exactly
the center of an atom [8], and treat λ1 and λ2 as vari-
ational parameters to seek the surface-state energy by a

variational calculation. Matching φλ(z) and φ′λ(z)/φλ(z)
at z = 0, provides the relationships:

A cosλ2 = B, (29a)

q = −
(
λ1 +

π

a
tanλ2

)
, (29b)

while one of the normalization constants A is deter-
mined by

A−2 = − cos2 λ2

2
(
λ1 +

π

a
tanλ2

)

+
1
4


λ1 cos 2λ2 − π

a
sin 2λ2

λ2
1 + π2/a2

+
1
λ1


 · (30)

The surface-state variational energy then can be written as

EV = Ee − Ee−LO − Ee−SO, (31)

where

Ee =
π2

~
2A2

8m0a2λ1
− V0

2
A2 cosλ2

λ1 +
π

a
tanλ2

− V1A
2

4

(
cos 2λ2

λ1
+

2λ1

λ2
1 + π2/a2

+
λ1 cos 2λ2 − 2π

a sin 2λ2

λ2
1 + 4π2/a2

)
, (32a)

Ee−LO =αL~ωLO

[π
2
−A2

(
g1 + g2 cos2 λ2

)]
, (32b)

Ee−SO =αS~ωSOA
2
(
I1 + I2 cos2 λ2

)
, (32c)

with

g1 =

∞∫
0

1
4(1 + k2)

[
1

λ1 + uLk

+
(λ1 + uLk) cos 2λ2 − π

a sin 2λ2

(λ1 + uLk)
2 + π2/a2

]
dk,

g2 =−
∞∫
0

dk

2 (1 + k2)
(
λ1 + π

a tanλ2 − uLk
) ,
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and

I1 =

∞∫
0

uS

4(q2 + u2
S)

[
1

λ1 + q

+
(λ1 + q) cos 2λ2 − π

a sin 2λ2

(λ1 + q)2 + π2/a2

]
dq,

I2 =−
∞∫
0

uSdq

2 (q2 + u2
S)

(
λ1 + π

a tanλ2 − q
) ·

The average penetrating depth of surface state wave func-
tion is given by

d = 〈φλ |z|φλ〉 z ≥ 0

=
A2

8

[
1
λ2

1

+

(
λ2

1 − π2/a2
)
cos 2λ2 − 2λ1

π
a sin 2λ2

(λ2
1 + π2/a2)2

]
·

(33)

The variational parameters λ1 and λ2 can be determined
by the equation

∂EV /∂λi = 0, i = 1, 2. (34)

The complexity of equation (34) gives rise to the need
for numerical solutions. Using equations (31–34), we can
obtain the average penetrating death of surface-state wave
function d and the minimum of the variational energy EV ,
i.e. the surface-state energy ES .

In equation (31) Ee−LO and Ee−SO correspond
to respectively the e-LO-p and e-SO-p interactions
contributions.

5 Numerical results and discussion

We have numerically computed the surface-state energies
of the polarons for zinc-blende nitrides GaN, AlN, and
InN. For the sake of comparison we have also calculated
the surface-state energies of the electron without including
the e-p interactions. The parameters used in the compu-
tations are listed in Table 1 and the results are illustrated
in Figures 1–3.

To clearly understand the effects of the e-p interac-
tion on the surface states, we have plotted in Figure 1 the
surface-state levels with and without the phonons influ-
ences as functions of the hydrostatic pressure P for the
materials GaN, AlN, and InN, here we put the surface po-
tential to be a reasonable value V0 = 5.0 eV [8] in the com-
putations for reference. For ease of presentation, we have
chosen the values of the pressure P to vary in the reason-
able range 0–30 GPa [3,4] in the numerical computations.
It is clearly seen from Figure 1 that the pressure raised the
surface-state levels obviously for all the computed materi-
als. There is nearly linear increase from the zero-pressure
values with rising pressure, where linear terms are about
4.0 meV/GPa, 5.4 meV/GPa, and 4.2 meV/GPa corre-
sponding to GaN, AlN and InN, respectively. Comparing

Fig. 1. The surface-state levels ES with (solid line) without
(dashed line) e-p interactions as function of the pressure P for:
(a) GaN, (b) AlN and (c) InN.

Fig. 2. The surface-state energy shifts Ee−SO (solid line) and
Ee−LO (dashed line) by e-p interactions as functions of the
pressure P for: (a) GaN, (b) AlN and (c) InN.

the result at P = 30 GPa with that at P = 0 GPa, we
found that the net increases are 120.9 meV, 160.7 meV,
and 122.0 meV for GaN, AlN and InN, respectively. This is
due to the competition of change among the lattice con-
stant a and the band-gap Eg with pressure. The direct
effect of the pressure is to decrease the lattice constant
a, and to increase the band-gap Eg. On the other band,
the electron effective mass and the optical phonon fre-
quency increase with pressure, but the dielectric constant
decrease with pressure. It makes the pressure effect more
complicated.

As is expected that the electronic surface states includ-
ing the e-p interaction are always lower than that without
including the phonon effects for all the computed mate-
rials. In other words, the e-p interaction lowers the levels
of the surface states. It is also found in Figure 1 that the
two curves of the surface-state levels with and without the
phonon effects are separated by about scores of meV. It is
also seen that the effect of e-p interaction on surface states
is obvious. The curves for the materials GaN and AlN in
Figure 1a and Figure 1b are separated more distinctly
from each other than the material InN does. On the other
hand, the surface-state levels shifts are also related to the
width of the band-gap Eg. It follows that the stronger e-p
coupling or broader width Eg is, the greater the shift of
surface-state energy. Furthermore, these results and those
of our previous works [11,12] for the phonon effects are
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Fig. 3. The average penetrating depths d of surface state wave
function as functions of the pressure P .

almost alike, but the phonon influences are more obvious
for the wide band-gap semiconductors GaN, AlN and InN.
This can be seen from Figure 2.

In Figure 2, we have illustrated the shifts Ee−SO and
Ee−LO of surface-state energies by the interactions be-
tween the electron and the half-space LO-phonon and
SO-phonon as functions of the hydrostatic pressure P
for the above materials with V0 = 5.0 eV. It is clearly
seen that the half-space LO-phonon effect is less value
than SO-phonon effect for the energy levels of the sur-
face states. It follows that the stronger the e-p coupling,
the greater are the half-space LO-phonon and SO-phonon
influences, respectively. These shifts are at zero-pressure
Ee−SO = 38.04 meV and Ee−LO = 10.24 meV for GaN,
Ee−SO = 80.90 meV and Ee−LO = 18.46 meV for AlN,
and Ee−SO = 19.54 meV and Ee−LO = 6.12 meV for InN,
respectively. It is also found that these shifts are slow lin-
ear increases with pressure. Comparing the result at P =
30 GPa with that at P = 0 GPa, we found that Ee−SO

and Ee−LO increase to 12.5% and 9.3%, whereas the net
increases are 4.76 meV(Ee−SO) and 0.96 meV(Ee−LO) re-
spectively for GaN. Meanwhile, AlN and InN correspond
closely to GaN in Figure 2. It is shown that the contri-
butions from SO-phonon and half-space LO-phonon are
different. The SO-phonon contribution is dominant, espe-
cially for materials with stronger e-p couplings or broad
band gap material AlN, but half-space LO-phonon contri-
bution cannot be also neglected, even if weak e-p coupling
or narrow band gap material InN. It is indicated that the
pressure dependence of the SO-phonon influence on sur-
face states is more obvious than the half-space LO-phonon
does, and the half-space LO-phonon influence is small with
pressure.

The average penetrating depth, between the electronic
surface states and the material surface, are plotted as func-
tions of the hydrostatic pressure P in Figure 3 for the

aforesaid materials with V0 = 5.0 eV. It can be seen that
the average penetrating depths d are only about 0.1 nm, so
it is less than the lattice constant of the aforesaid materi-
als. It shows that the electronic surface states are localized
near the surface [8], hence effect of e-SO-p interaction on
the surface-state of electron is dominant. It is also found
that the average penetrating depths d decrease as the pres-
sure increase for the all materials. The pressure makes the
electron to move near surface, and raises the electronic
surface-state energies.

In summary, we have investigated the pressure effect
of the surface states of an electron in zinc-blend nitrides
semiconductors including e-p interaction by a variational
treatment. The energy level of a surface-state polaron has
been calculated. The effects of the e-p interaction on the
surface states are obtained and discussed under hydro-
static pressure for GaN, AlN, and InN materials. The
numerical results show that the e-p coupling lowers the
surface-state energy levels, so the phonon and pressure
effects is obvious. It is also found that the SO-phonon
influence on the surface-state of electron is dominant. It
indicates that the surface-state energies and the influence
of e-p interaction increase with pressure obviously.
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